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We analyse and improve a recently-proposed two-phase flow model for the statistical
evolution of two-fluid mixing. A hyperbolic equation for the volume fraction, whose
characteristic speed is the average interface velocity v∗, plays a central role. We
propose a new model for v∗ in terms of the volume fraction and fluid velocities, which
can be interpreted as a constitutive law for two-fluid mixing. In the incompressible
limit, the two-phase equations admit a self-similar solution for an arbitrary scaling of
lengths. We show that the constitutive law for v∗ can be expressed directly in terms
of the volume fraction, and thus it is an experimentally measurable quantity. For
incompressible Rayleigh–Taylor mixing, we examine the self-similar solution based
on a simple zero-parameter model for v∗. It is shown that the present approach gives
improved agreement with experimental data for the growth rate of a Rayleigh–Taylor
mixing layer.

Closure of the two-phase flow model requires boundary conditions for the surfaces
that separate the two-phase and single-phase regions, i.e. the edges of the mixing layer.
We propose boundary conditions for Rayleigh–Taylor mixing based on the inertial,
drag, and buoyant forces on the furthest penetrating structures which define these
edges. Our analysis indicates that the compatibility of the boundary conditions with
the two-phase flow model is an important consideration. The closure assumptions
introduced here and their consequences in relation to experimental data are compared
to the work of others.

1. Introduction
Initial random disturbances at an unstable interface between fluids of distinct

density lead to the formation of a chaotic mixing layer between the fluids. In the
case of Rayleigh–Taylor (RT) instability, the chaotic fluid mixing is driven by an
acceleration across the interface (see, e.g. Sharp 1984).

Chen et al. (1996) proposed a new two-phase flow model as a basis for a quantitative
analysis of the statistical evolution of the mixing layer. The approach taken in
formulating the model, summarized in § 2, produced striking results. The ensemble-
averaged Euler equations provide a natural framework for a unified description of
turbulence and two-fluid mixing. Because pressure equilibration in the two-phase
flow is not imposed, several substantial improvements in the modelling are achieved:
(a) mixing driven by pressure differences is included; (b) the governing two-phase
equations for compressible mixing are fully hyperbolic; and (c) an equation of state
for a mixture of immiscible fluids is not required. In this paper, we improve the
formulation of the two-phase flow model and extend its range of applicability to
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other interface instability problems. For the case of incompressible fluid mixing, we
analyse the mathematical content and physical properties of the model, with an
emphasis on its application to RT instability.

We establish five main results. The first result, discussed in § 2, is a model for the
average interface velocity v∗ and pressure p∗. In particular, v∗ is the characteristic
speed in a hyperbolic equation for the volume fraction in the two-phase flow, called
the interface equation. We propose, as constitutive laws for two-fluid mixing, an
expression for f∗ (f = v, p) in terms of the volume fraction, time, and single-phase
values of f.

The second result, presented in § 3, is a re-interpretation of a recently-found renor-
malization group fixed-point solution for incompressible RT mixing (see Glimm, Saltz
& Sharp 1996). The interface equation admits self-similar solutions for an arbitrary
scaling of lengths. The motion of the mixing zone edges determines the scaling law.
The hyperbolicity of the interface equation represents the simple idea that surfaces
of constant volume fraction are propagating entities. Thus our strategy of modelling
v∗ is potentially applicable to a wide range of chaotic mixing phenomena.

The third result concerns the suitability of the two-phase model for laboratory stud-
ies of chaotic fluid mixing. In the framework of self-similar incompressible mixing, the
constitutive law for the average interface velocity directly determines the distributions
of volume fractions and velocities across the mixing layer; v∗ is, in fact, the inverse
of the volume fraction profile, which is a directly observable quantity. Moreover, our
theoretical analysis links the scale-invariant fluid velocities to the volume fraction.
Thus any constitutive law for v∗ involving only velocities and volume fractions is
itself experimentally testable.

The fourth result is an analysis of the renormalization group fixed point for
incompressible mixing. In § 3.2 we derive some properties of self-similar mixing which
are independent of any constitutive assumptions regarding v∗. In § 3.3 we adopt a
fractional linear form for v∗ and give a priori arguments which determine all of the
parameters appearing in this model in terms of the mixing coefficients α1 and α2. The
discussion of § 4 is specific to RT instability, and it includes a preliminary comparison
of the resulting volume fraction profiles with laboratory data, as well as a prediction
of the expansion ratio α2/α1 based on an approximate model for the motion of the
mixing layer centre of mass.

The fifth result, given in § 5, is an analysis of boundary conditions for the edges of
the mixing layer in the ensemble-averaged flow, to complete the closure of the two-
phase flow model for RT mixing. These edges correspond to the tips of the furthest
penetrating structures (bubbles and spikes) in the pre-averaged flow. The boundary
conditions are based on a phenomenological model for the inertial, buoyant, and drag
forces on a single bubble or spike, and they supply information that is lost during
the process of ensemble averaging the exact equations of motion. Phenomenological
force laws for spikes and bubbles in RT mixing have been proposed by other authors.
In § 5, we compare these various models, which are distinguished by their choice
of phenomenological parameters, and we analyse their compatibility with two-phase
flow models of RT mixing layers.

In § 6 we discuss the issue of pressure non-equilibration in the context of RT mixing.
Two-pressure models of two-phase flow have been previously discussed by several
authors (see, e.g. Stewart & Wendroff 1984; Holm & Kupershmidt 1984; Ransom &
Hicks 1984), who have noted several desirable features of these models, including the
hyperbolicity of the governing equations. In this section, we also summarize those
features of our model which distinguish it from a two-phase model for RT mixing
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originally proposed by Harlow & Amsden (1975) and developed further by Youngs
(1984) and Freed et al. (1991).

The results of this paper give a simple description of a two-phase RT mixing layer
that is in agreement with existing experimental data. The hyperbolic equation for the
volume fraction, which to the best of our knowledge has not played a prominent role
in previous studies of two-fluid mixing, appears to be of fundamental importance. In
our opinion, the formulation presented here is well suited to generalizations which
describe both turbulence and multiphase mixing. It is also suitable for application
to practical problems, when properly interfaced with full-scale simulations. We stress
that the closure relations for v∗ and other average interface quantities play a crucial
role in this approach. Further studies of these closure relations and the boundary
conditions for the mixing layer edges are required to extend our approach to other
flow regimes.

2. A two-phase flow model for a fluid mixing layer
Chen et al. (1996) recently proposed a two-phase flow model for fluid mixing using

a formalism that is described by Drew (1983). In this section, we present this model
and specify improved constitutive laws for the material coupling terms.

Effective equations of motion are derived by performing single-phase averages of
the microphysical model over an infinite ensemble of microscopic flow realizations.
We assume that only the z-direction is preferred in the infinite ensemble (e.g. by
aligning an external acceleration along the z-axis), and that the statistics of the
ensemble are translationally invariant in the transverse (x and y) directions, so that
all averaged quantities depend only on z and t. One-dimensionality is imposed in
practice by spatially averaging the experimental or numerical simulation data over
the transverse direction(s). The ensemble-averaging process introduces new unknowns,
namely second moments of fluctuating quantities and material coupling terms, which
are replaced by constitutive laws. Detailed explanations of the closure models for
compressible RT mixing, as well as their validation by comparison with data from
two-dimensional numerical simulations, are provided by Chen (1995) and Chen et al.
(1996).

The microphysical model that we consider is the compressible Euler equations,
supplemented by a kinematic constraint for the material interface (see Drew 1983).
The two-phase flow model obtained by ensemble averaging within each fluid is then

∂βk

∂t
+ v∗

∂βk

∂z
= 0, (2.1)

∂(βkρk)

∂t
+
∂(βkρkvk)

∂z
= 0, (2.2)

∂(βkρkvk)

∂t
+
∂(βkρkvkvk)

∂z
= −∂(βkpk)

∂z
+ βkρkg + p∗

∂βk

∂z
, (2.3)

∂(βkρkεk)

∂t
+
∂(βkρkvkεk)

∂z
= −pk ∂(βkvk)

∂z
+ (pv)∗

∂βk

∂z
, (2.4)

together with the constraint

β1 + β2 = 1. (2.5)
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In our notation, single-phase quantities are denoted with a subscript k = 1, 2; βk , ρk ,
vk , pk , and εk are, respectively, the volume fraction, density, z-velocity, pressure, and
specific internal energy of fluid (phase) k. A single-fluid equation of state (EOS) holds
within each phase.

These equations incorporate several closure assumptions that were explained and
validated by Chen (1995) and Chen et al. (1996), as mentioned above, namely:
neglect of single-phase turbulent second moments, equality of mass-weighted and
volume-weighted averages of velocity, neglect of a high-order correlation term in the
energy equation, and application of the microphysical EOS to averaged variables.
For the data sets studied, all of these approximations, with the exception of the
zero Reynolds stress, were found to induce a negligible error. The EOS closure is,
in fact, exact for EOS models based on small departures from a known reference
state, such as the stiffened gas EOS (see, e.g., Menikoff & Plohr 1989), of which the
polytropic EOS is a special case. We further note that (2.1)–(2.4) are derived without
reference to the number of spatial dimensions in the microphysical model, although
the closure approximations themselves have only been validated for two-dimensional
RT mixing.

The approximations that the turbulent moments are small are closure hypotheses
that reflect the physical notion that material coupling at interfaces plays a larger
role than single-phase turbulence in determining the dynamics of the fluid mixing,
at least in the flow regimes that were studied by Chen et al. While they found that
the Reynolds stress is fairly small (though not negligible), they also observed that
it grows over time. Fortunately, the two-phase model as derived allows alternative
closures, such as a k − ε model or a full second-order closure in each phase, as a
way to combine single-phase turbulence with two-phase mixing. This idea has been
discussed by Cranfill (1991, 1992).

To fix sign conventions, we take ρ1 6 ρ2, direct the external acceleration along
the +z-direction (g > 0), and place the light fluid above (larger z values relative
to) the heavy fluid. Altogether there are ten equations: (2.2)–(2.4) for k = 1, 2, two
single-phase EOS models (not displayed), (2.1) for one of the phases, and (2.5). There
are thirteen unknowns: in addition to the ten primitive variables βk , vk , ρk , pk , and
εk (k = 1, 2), there are three material coupling terms of the form f∗∂βk/∂z, where
f = v in (2.1), p in (2.3), and pv in (2.4). We can close the system of two-phase
flow equations by specifying constitutive laws for the quantities v∗, p∗, and (pv)∗, and
boundary conditions for the edges of the mixing layer.

In relation to the microphysical ensemble, f∗ (f = v, p, pv) is the average of the
fluid quantity f, conditioned on evaluation at material interfaces; for example, p∗ is
the average interface pressure. Surface tension is neglected in this model, so that p∗
and (pv)∗ are defined unambiguously. We have restored the interface averages to their
exact (unclosed) form in the equations above so that we can now present improved
constitutive laws for these quantities.

The height at which β1 (β2) vanishes is labelled the lower (upper) edge of the
mixing zone, and it corresponds to the tip of the frontier portion of light (heavy) fluid
in the microscopic flow. Therefore f∗ must equal f1 (f2) at the lower (upper) edge of
the mixing zone. For the cases f = v and f = p, we make two assumptions about the
form of a constitutive law for f∗: (a) f∗ is a linear combination of f1 and f2; and (b)
the coefficients of f1 and f2 depend on volume fraction and time. These assumptions
imply an interpolation formula for f∗ of the form

f∗ = µ
f
1(t, β1)f2 + µ

f
2(t, β2)f1, (2.6)
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where µ
f
k (t, βk = 0) = 0 and µ

f
k (t, βk = 1) = 1 for k = 1, 2, in order to satisfy

the boundary conditions for f∗ stated above. The constitutive law for (pv)∗ is more
complicated, due to the fact that pv is a nonlinear function of primitive variables, and
it is discussed in detail elsewhere (see Glimm, Saltz & Sharp 1998b).

Equation (2.6) is proposed as a useful starting point for the constitutive modelling
of two-fluid mixing. It is based on the hypothesis that an average interface quantity
is given as some unspecified weighted average of its single-phase values. At a height
z and time t, the contribution to f∗(z, t) from phase 3 − k (k = 1, 2) is weighted
according to how much of the other fluid there is, as indicated by the volume fraction
βk(z, t).

In the model for the average interface velocity, Galilean frame invariance imposes
an algebraic constraint on the coefficients µvk . If we require (2.6) for f = v to hold in
a coordinate system moving vertically with a constant velocity vo, then

v∗ − vo = µv1(t, β1)(v2 − vo) + µv2(t, β2)(v1 − vo).
Since vo is arbitrary, it follows that

µv1(t, β1) + µv2(t, β2) = 1 (2.7)

for 0 6 β1 6 1, β2 = 1− β1. In the incompressible limit, pressure is defined to within
an arbitrary additive constant po, so that

p∗ − po = µ
p
1(t, β1)(p2 − po) + µ

p
2(t, β2)(p1 − po).

Again, since po is arbitrary, it follows that

µ
p
1(t, β1) + µ

p
2(t, β2) = 1 (2.8)

for 0 6 β1 6 1, β2 = 1− β1.
Equation (2.6) is a generalization of the original model for the average interface

quantities that was proposed by Chen et al. (1996). They set µfk (t, βk) = βk for
f = v, p, pv and k = 1, 2, and compared f∗∂βk/∂z to its exact value evaluated from
two-dimensional RT simulation data covering a fairly wide range of fluid conditions.
Agreement was good for f = v and f = pv and excellent for f = p. Glimm et al. (1996)
showed that for incompressible fluid mixing, this choice of interpolation scheme for
v∗ constrains the volume fractions and two-phase velocities to vary linearly across
the mixing region. The actual variation in these quantities has not been adequately
established. Freed et al. (1991) displayed a monotone, slightly convex polynomial
fit to several volume fraction profiles. Chen et al. (1993) reported a region of non-
monotonicity in the volume fraction profile, situated well inside the mixing layer.
As we discuss in § 4, there are also ambiguities associated with locating the edges
of the mixing zone in simulations and experiments, possibly due to the effects of a
finite sample size or a lack of perfect scale invariance. Furthermore, the analysis of
§ 3.1 shows that if µv1(t, β) = µv2(t, β) in incompressible flow, then the mixing zone is
constrained to expand at the same rate in each direction. Thus there are uncertainties
as to the appropriate choice of the coefficients µfk , and correct modelling of these
quantities is a key problem.

The equations of motion form a natural two-phase extension of the Euler equations
for compressible fluid flow in an external force field, with the addition of the interface
equation (2.1) and source terms representing the interchange of momentum and
energy between the phases. One can easily confirm that (2.1)–(2.4) are hyperbolic,
with characteristic speeds vk and vk ± ck for each phase and v∗ for the interface mode.
It is evident that the characteristic structure of the system changes across any surface
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Figure 1. The method of characteristics for the heavy phase applied at the upper edge of the
mixing zone in compressible two-phase mixing. The C∗ and C0

2 characteristics, corresponding to the
interface and heavy fluid particle modes, respectively, coincide with the path of the upper edge. The
left-facing sound mode in the heavy phase, C−2 , is missing, as it originates from outside the mixing
layer, where there is no heavy fluid.

on which one of the volume fractions vanishes, because the number of characteristics
and the system size changes at each edge of the mixing layer. Moreover, the equations
are incomplete there, as there is no incoming sound wave for the phase of vanishing
volume fraction. This situation is illustrated in figure 1. In the example shown in this
figure, the interface and heavy particle characteristics, respectively labelled C∗ and C0

2 ,
coincide with the trajectory of the upper edge of the mixing zone. The right-facing
sound characteristic in the heavy phase is labelled C+

2 and emanates from the interior
of the mixing zone. The left-facing sound characteristic in the heavy phase is labelled
C−2 and emanates from outside the mixing zone, where there is no heavy fluid. Thus
there is no C−2 characteristic at the upper edge; by a similar argument, there is no
C+

1 characteristic at the lower edge.
In our interpretation, the missing characteristics indicate that some information

about the physical behaviour of the leading coherent structures in the pre-averaged
flow is represented by the motion of the mixing zone boundaries in the two-phase
flow. In the case of RT mixing, these structures (or modes) are the tips of the leading
spikes and bubbles. We can supply this missing information, and therefore close the
system of equations, by formulating dynamical equations for the trajectories of the
mixing zone edges. This issue is discussed in § 5.

In the incompressible limit, the RT mixing zone edges are known from experiment
(Read 1984; Youngs 1989) and theory (Glimm & Sharp 1990) to follow constant-
acceleration trajectories given by

Z1(t) = −α1Agt
2, Z2(t) = α2Agt

2, (2.9)

where Zk is the position of the edge corresponding to the limit of vanishing βk ,
A = (ρ2 − ρ1)/(ρ2 + ρ1) is the Atwood density ratio, and α1 and α2 are positive
mixing coefficients that can depend on A. As shown in the following section, these
trajectories lead to self-similar solutions to the incompressible continuity and interface
equations that are complete up to specification of α1 and α2. An additional modelling
assumption, described in § 4.3, leads to a prediction of α2/α1 as a function of A, which
can be compared to experimental data.
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b1 =1, v1 = 0
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q = b1q1+ b2q2

Figure 2. Incompressible two-phase mixing in the (z, t)-plane, showing the range and boundary
values of the fluid volume fractions and velocities.

3. Incompressible two-phase mixing
The main assumptions of this section are the interface (2.1) and two-phase con-

tinuity (2.2) equations, incompressibility, and the v∗ closure. Following Glimm et al.
(1996), we average the incompressible continuity condition ∇ · v within each phase
and apply the definition of v∗ to obtain

∂βkvk

∂z
= v∗

∂βk

∂z
. (3.1)

The v∗ closure depends on the coefficients µfk in the constitutive law (2.6) for f = v,
which we restate here without the superscript v,

v∗ = µ1(t, β1)v2 + µ2(t, β2)v1. (3.2)

This equation reduces the modelling of v∗ to the specification of the coefficients µk .
In § 3.3 we assign µk a parametric form and then determine all of the free parameters
in this form from boundary data.

The boundary data that we assume here are specified as the location Zk(t) of the
mixing zone edges, or equivalently as the edge velocities Vk(t) = dZk/dt. The only
assumption that we make regarding the motion of the edges is that V1 < 0 and
V2 > 0, which expresses the idea that the mixing zone expands.

The main result of § 3.1 is a complete closed-form solution of the continuity and
interface equations in terms of initial and boundary data, and also in terms of the
µk of (3.2). This solution is made more precise as the initial and boundary data are
given more explicitly, first to satisfy self-similar hypotheses in § 3.2, and then with µk
uniquely specified in terms of the boundary data, i.e. the proportionality constants
for the edge trajectories, in § 3.3.

The assumed form for v∗ allows the decoupling of the continuity equations from
the momentum equations and is thus critical in our ability to integrate the continuity
equations in closed form. Thus we see the physical implications of the v∗ closure (3.2).
The transfer of momentum in the interior of the mixing zone does not influence the
volume fraction and velocity profiles, while these quantities do depend on momentum
transfer at the edges. The role of the momentum equations is therefore to influence
the boundary data. Integrated (centre of mass) momentum and other quantities are
analysed in § 3.2 for the purpose of constraining the boundary data and also to
facilitate comparison to experimental data.

The geometry of the mixing zone is illustrated schematically in figure 2.
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3.1. Solution of continuity and interface equations

The purpose of this subsection is to provide a closed-form solution for the velocities
v1, v2, and v∗ in terms of the volume fraction. The solution for vk , when substituted
into the continuity equation (2.2), yields a hyperbolic conservation law for βk alone
which has a unique smooth solution for the given boundary data (see Glimm et al.
1998b). We thereby demonstrate that the volume fraction and velocity profiles follow
directly from a constitutive law for v∗ and boundary conditions for the mixing zone
edges.

We first derive an expression for the velocity as a function of volume fraction,
which, by substitution, leads to a hyperbolic conservation law for βk . Summing (3.1)
over k and using (2.5),

∂

∂z
(β1v1 + β2v2) = 0. (3.3)

The solution to this ordinary differential equation (ODE) is β1v1 + β2v2 = U(t). In
the light (heavy) fluid region outside the mixing zone, conservation of mass is simply
∂v1/∂z = 0 (∂v2/∂z = 0). Since v1 (v2) must be continuous across the upper (lower)
mixing zone edge, where β2 = 0 (β1 = 0), it follows that v1 (v2) is uniform and equal to
U(t) in the light (heavy) fluid region. Chaotic fluid mixing occurs in a finite but large
domain, for which there is a boundary condition that v1 = 0 (v2 = 0) at the upper
(lower) wall. It follows that U = 0 in a domain of arbitrary but finite size; hence
U = 0 in general. Enforcing continuity of the dependent variables at the mixing zone
edges, it follows that

β1v1 + β2v2 = 0. (3.4)

At any given time, (3.1) is equivalent to an ODE relating the variation in βk and
vk across the mixing region,

dvk
dβk

=
v∗ − vk
βk

. (3.5)

Let k′ = 3 − k be the complementary index to k. Using the model (3.2) for v∗ in
conjunction with (2.7) and (3.4) to eliminate vk′ from (3.5), we obtain

− 1

vk

dvk
dβk

=

[
µvk(t, βk)

βk
− µvk′(t, βk′)

βk′
+

1

βk′

]
, (3.6)

The boundary conditions for this ODE are

βk = 0, vk = Vk, vk′ = 0 at z = Zk(t),

µk(t, 0) = 0, µk(t, 1) = 1,

for k = 1, 2. The solution to (3.6) is then

vk = Vkβk′e
−Fk(t,βk), (3.7)

where

Fk(t, βk) =

∫ βk

0

[
µk(t, φk)

φk
− µk′(t, φk′)

φk′

]
dφk. (3.8)

In this integral the constraint φk + φk′ = 1 holds. It follows from (3.7) that v1 and v2

do not change sign inside the mixing zone; hence v1 < 0 and v2 > 0 in this region.
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We now derive a constraint relating the ratio of the edge velocities to the µk .
Solving (3.5) for v∗ and using (3.6) to substitute for dvk/dβk ,

v∗ = [βk′µk′(t, βk′)− βkµk(t, βk)] vk
βk′
. (3.9)

The right-hand side of this expression must give the same v∗ for both k = 1 and
k = 2. This condition can be written as

0 = [β2µ2(t, β2)− β1µ1(t, β1)]
β1v1 + β2v2

β1β2

,

and it is clearly satisfied inside the mixing region (0 < βk < 1) due to the incompress-
ibility relation (3.4). At the lower edge of the mixing zone, we need

0 = V1 + lim
β1→0

v2

β1

.

Using the velocity solution (3.7), this expression is equivalent to V1 = −V2e
−F2(t,1);

similarly, at the upper edge we have V2 = −V1e
−F1(t,1). Since F1(t, 1) = −F2(t, 1), it

follows that these edge constraints are identical and equivalent to∣∣∣∣V2

V1

∣∣∣∣ = e−F1(t,1). (3.10)

3.2. Self-similar mixing

In this subsection, we study self-similar incompressible solutions of (2.1), (2.2)
and (2.5). We show that v∗ is the inverse to βk as a function of z. This analysis
does not assume (3.2) or any other form of closure for v∗. As a result, (3.2) or
any other model is experimentally testable by comparison to results of this sec-
tion. We also derive other experimentally testable consequences of self-similarity and
incompressibility.

To define self-similarity, we introduce a length scale Z(t) and its derivative,V(t) =
dZ/dt, and assume proportionality of all lengths in the problem to Z, so that

Zk(t) = (−1)kαkZ(t), Vk(t) = (−1)kαkV(t). (3.11)

For RT instability, Z(t) = Agt2. Equations (3.11) define the (positive) mixing coeffi-
cients α1 and α2. Self-similarity requires the initial data Z(0) = 0, which approximates
a mixing layer that is negligibly thin, and hence self-similar, at t = 0. This assumption
is satisfied to a reasonably degree in the RT experiments of Read (1984) and Youngs
(1989).

We define a scaled position, ẑ = z/Z, and a scaled velocity, v̂ = v/V. We substitute
the similarity form βk(z, t) = βk(ẑ) into the interface equation (2.1) and multiply by
Z/V, which gives

(−ẑ + v̂∗)
dβk
dẑ

= 0.

If the volume fraction profile has no flat portion inside the mixing zone, then this
ODE can be satisfied only by setting the quantity in parentheses equal to zero,

ẑ = v̂∗. (3.12)

Thus v̂∗, as a function of volume fraction, is simply the inverse of the volume fraction
profile.
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The velocities v̂1 and v̂2 likewise are determined directly from the volume fraction.
Substituting (3.12) into the ODE (3.1) for k = 1 and integrating with respect to β1,

β1v̂1 =

∫ β1

0

ẑ(β′1) dβ′1, (3.13)

while β2v̂2 = −β1v̂1, due to (3.4). Applying the boundary condition that v1 = 0 at the
upper edge, (3.13) implies that ∫ 1

0

ẑ(β1) dβ1 = 0, (3.14)

which is an ‘Equal Area Rule’ for the inverse volume fraction profile.
The Equal Area Rule is a consequence of the assumptions of incompressibility

and self-similarity, and it must hold regardless of the specific form of v∗. Since
volume fraction profiles are measurable (Youngs 1989; Snider & Andrews 1994),
this rule is a useful check on the self-similarity of the mixing which is directly
applicable to experimental data. Moreover, even though measured velocities are
currently unavailable, the combination of (3.4), (3.12) and (3.13) shows that all of
the velocity profiles can be determined from volume fraction data. In fact, velocity
profiles can be inferred even when the mixing is not self-similar, provided that two
volume fraction profiles closely spaced in time are available (Glimm, Saltz & Sharp
1998a). Therefore, any constitutive law for v∗ involving only the volume fractions and
velocities can be tested using available experimental methods.

The possibility that there is a finite segment of constant βk in the mixing zone is
not considered here. We also note that (3.12) makes sense provided that v∗ increases
from the lower edge to the upper edge of the mixing layer; otherwise, (2.2) admits
discontinuous self-similar solutions.

We next derive identities for transverse-averaged system quantities, which will serve
to constrain possible boundary conditions. First note that the total mass M of the
mixing layer depends only on the rate at which mass enters the mixing region,

M(t) = M(0) + ρ1[Z2(t)− Z2(0)] + ρ2[Z1(0)− Z1(t)].

It follows from the assumed initial data, Zk(0) = 0 (hence M(0) = 0), the identities

ρk

ρ2 + ρ1

= 1
2

[
1 + (−1)kA

]
, (3.15)

and (3.11) that

M̂ = 1
2
(1 + A)α1 + 1

2
(1− A)α2, (3.16)

where M̂ = M/(ρ2 + ρ1)Z(t). The total momentum P of the mixing layer is given by

P (t) =

∫ Z2(t)

Z1(t)

(β1ρ1v1 + β2ρ2v2) dz.

Replacing β1v1 with −β2v2, transforming to scaled variables, and using (3.15), we
obtain

P̂ = A

∫ α2

−α1

β2v̂2 dẑ, (3.17)

where P̂ = P/(ρ2 + ρ1)Z(t)V(t). Equation (3.17) shows that P̂ is positive definite
for A 6= 0; in other words, the total momentum of the mixing layer has a preferred
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direction of increase regardless of the densities of the fluids or the velocities of the
edges.

The centre-of-mass position Z is given by

Z(t) =
1

M

∫ Z2(t)

Z1(t)

(β1ρ1 + β2ρ2)z dz.

We cast this integral in scaled variables and evaluate it partially to obtain

M̂Ẑ = 1
4
(1 + A)(α2

2 − α2
1)− A

∫ α2

−α1

β1ẑ dẑ, (3.18)

with Ẑ = Z/Z(t). For the centre-of-mass velocity V = dZ/dt, we have V̂ = Ẑ , with

V̂ = V/V(t). Even though the fluids are incompressible, P 6= MV because the density
ρ = β1ρ1 + β2ρ2 is variable. Furthermore, the centre of mass can remain stationary
or move backward in spite of the fact that the mixing layer momentum is forward.

Integrating by parts in (3.18), we can write Ẑ in terms of α1, α2, A, and an integral
over the square of the inverse volume fraction profile,

M̂Ẑ = 1
4
(1− A)α2

2 − 1
4
(1 + A)α2

1 + 1
2
A

∫ 1

0

ẑ2 dβ1. (3.19)

3.3. A v∗ closure unique in terms of α1 and α2

In this subsection, we propose a specific form for the coefficients µk in (3.2) and
derive closed-form expressions for the self-similar distributions of volume fractions
and velocities. In § 4, we examine these solutions for the case of RT instability.

We propose for µk the fractional linear form

µk(t, βk) =
akβk + dkβk′

ckβk + bkβk′
, (3.20)

for k = 1, 2, where the ak , bk , ck and dk are time-dependent coefficients to be
determined. Equation (3.20) can be understood as the first-order step in a systematic
determination of µk by the method of Padé approximation. Applying the boundary
conditions on µk , it is clear that dk = 0 and ck = ak . Furthermore, the numerator and
denominator in (3.20) can be multiplied by any non-zero number without changing
the value of µk , so that we are free to set either ak or bk arbitrarily, for each k. It
convenient to choose a1 = α1 and a2 = α2, and we are left with two undetermined
coefficients b1 and b2.

There are two mathematical constraints on the µk , namely (2.7) and (3.10). Under
the assumption of self-similar flow, the ratio of the edge velocities is time independent
with magnitude α2/α1. Therefore neither constraint involves t explicitly, so we can
omit it from the following equations. Evaluating (3.8) for F1(1) and inserting the
result into (3.10), we have (

b1

α1

) α1
α1−b1

(
b2

α2

) α2
b2−α2

=
α2

α1

, (3.21)

while (2.7) implies the simple relation

b1b2 = α1α2. (3.22)

The unique solution to the two equations (3.21) and (3.22) for the two unknowns b1
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Figure 3. Scale-invariant heavy fluid volume fraction and velocity profiles for different values of
the mixing layer expansion ratio α2/α1. The vertical axis in (a) is the volume fraction of heavy fluid
β2, which varies from 1 at the lower edge to 0 at the upper edge of the mixing zone. The vertical
axis in (b) is the scaled heavy fluid velocity v̂2, defined in § 3.2, which varies from 0 at the lower
edge to α2 at the upper edge of the mixing zone. The horizontal axis in each graph is the scaled
height ẑ, defined in § 3.2, which varies from −α1 at the lower edge to α2 at the upper edge.

and b2 is

b1 = α2, b2 = α1,

and our final proposed model is then

µk =
αkβk

α
, (3.23)

where α ≡ α1β1 + α2β2.
It is easy to show that e−Fk(βk) = αk′/α, and with this expression we finally obtain a

two-parameter (α1, α2) family of self-similar solutions from (3.7) and (3.12),

v̂1 = −α1α2β2

α
, v̂2 =

α1α2β1

α
, (3.24)

ẑ =
(
β2

1α1 − β2
2α2

) α1α2

α2
. (3.25)

Combining (3.2) and (3.23), we find a fully explicit expression for v∗, which is

v∗ =
α1β1v2 + α2β2v1

α1β1 + α2β2

. (3.26)

Note that this family of self-similar solutions is independent of the choice of scaling
law Z(t). When the mixing is not self-similar (i.e. arbitrary edge velocities), µk , vk ,
and v∗ have explicit solutions in terms of the Vk and βk that are straightforward
generalizations of the corresponding equations given above (see Glimm et al. 1998a).
The inverse volume fraction z(t, βk), on the other hand, can be expressed only in
terms of a time integral of v∗.

In figure 3, we display the volume and velocity profiles given by (3.25) and (3.24)
for different values of α2/α1.
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4. Incompressible Rayleigh–Taylor mixing
In this section we discuss features of the incompressible self-similar solution that

are specific to RT flow. Section sec:RT:profiles compares the profiles predicted by
the fractional linear model to those determined by experiment and by simulation
and two-phase flow models of other authors. In § 4.2 we discuss pressure boundary
conditions for incompressible RT mixing. In § 4.3 we study the centre-of-mass motion
of the RT mixing layer, and then introduce a further hypothesis which allows a
direct comparison of the model to experimental data for the expansion ratios α2/α1.
Section 4.4 contains some comments regarding the distinction between the model for
v∗ studied here and the one originally proposed by Chen et al.

4.1. Volume fraction and velocity profiles

For the case of RT instability, α1 is approximately universal and equal to 0.06
(Youngs 1989), while α2 equals α1 at A = 0 and then increases slowly with increasing
A, reaching roughly 2α1 at A = 0.9, according to experimental data (Youngs 1989).
Volume fraction profiles computed from (3.25) for α2/α1 ranging from 1.0 to 2.5 are
displayed in figure 3(a).

By definition, the mixing zone edge in the macroscopic flow corresponds to the tip
of the furthest penetrating coherent mode in the microscopic flow. In the Rayleigh–
Taylor literature, there are two common methods for determining the edge position
from experimental or simulation data: (a) apply the definition literally; e.g. measure
the position of the bubble edge as the height of the tip of the furthest penetrating
bubble; or (b) determine the self-similar distribution of volume fraction and then
consider the edges to be where the vanishing phase has dropped to, say, a 5% volume
fraction. Method (a) was apparently followed in Read’s (1984) and Youngs’ (1989)
measurements of the mixing coefficients (see, e.g. figure 8 of Read 1984), as well
as in front-tracking simulations of RT instability (Glimm et al. 1990; Chen et al.
1993). Method (b) was applied to experimental data by Snider & Andrews (1994) and
simulation data by Freed et al. (1991).

Measured volume fraction profiles tend to tail off slowly near the edges of the
mixing layer. It has not been adequately established whether this feature indicates
a real property of the self-similar, ensemble-averaged mixing or, alternatively, a
deviation from perfect scale invariance, a distortion due to a finite sample size, or
simply experimental uncertainty. If the tailing off in the profiles is a real feature of
the self-similar, ensemble-averaged two-phase flow, then the corresponding physical
property is that the volume fractions are smooth, and hence dβk/dẑ = 0, at the
mixing zone edges. As shown in figure 3(a), (3.25) gives only convex volume fraction
profiles, and it is easy to show mathematically that there is no self-similar solution
within the class of fractional linear v∗ which satisfies dβk/dẑ = 0 at the edges. Thus
a comparison between theoretical and experimental volume fraction profiles depends
on how one interprets the data near the mixing zone edges.

Youngs (1989) and Snider & Andrews (1994) show some self-similar distributions
of volume fraction that were measured at low A. Away from the rounded region near
each mixing zone edge, all of these profiles are linear, in agreement with the α2/α1 = 1
profile shown in figure 3(a). In fact, Snider & Andrews extrapolate the linear portion
of their profiles to βk = 0 and 1, as an alternative scheme for locating the mixing
zone edges, and they demonstrate that this method gives consistent values of α1. We
interpret this result as suggesting that the tailing off in the profiles does not appear
in the RNG fixed point solution.

The β2 curves shown in figure 3(a) and the v̂2 curves shown in figure 3(b) agree
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qualitatively with the predictions of the two-phase model of Freed et al. (1991), in
that they are convex and concave across the mixing region, respectively, with the
amount of curvature in the profiles increasing with increasing α2/α1 and the β2 profile
more strongly curved than the v̂2 profile at each α2/α1. Freed et al. also claim to have
agreement with the results of their direct numerical simulations, within the accuracy
of their simulation data, and they show a completely convex polynomial fit to the
self-similar volume fraction profiles in one of their simulations. It is not clear whether
the shape of this curve indicates the absence of a tail in the statistically-averaged
simulation data, or is a result of fitting the data to a low-degree polynomial. The
volume fraction profiles obtained from these simulations are considerably noisier
than their counterparts in experiments (Chen et al. 1993; Freed et al. 1991; Snider &
Andrews 1994; Youngs 1989).

Experimentally determined velocity profiles are not available. However, as we
mentioned in the previous section, the scale-invariant velocities v̂1, v̂2, and v̂∗ can be
determined directly from volume fraction data; in particular, v̂∗ = ẑ and is therefore
the inverse of the volume fraction profile. We emphasize the following points: within
the framework of self-similar incompressible mixing, (a) the only approximation in
our solution for the βk and vk is in the form of a closure relation for v∗; and (b) any
such closure relation involving only velocities and volume fractions is testable with
current experimental techniques.

There will eventually be enough data to resolve the issue of whether or not the
volume fraction is smooth at the edges of the mixing zone. Such data will then suggest
a reasonable functional form for βk(ẑ), parametrized by α1 and α2. Subsequently, one
can work backwards using the procedure described in § 3 to determine the coefficients
µk in the constitutive law (3.2) for v∗. We believe that this approach will be useful, as
we expect that future studies will show the closure framework proposed here to be
applicable in a broader framework than just incompressible self-similar mixing.

4.2. Pressure boundary conditions

The solution of the momentum conservation equations (2.3) for the case of incom-
pressible two-phase flow is addressed in a recently completed paper (Glimm et al.
1998b). We have already mentioned some challenging aspects of this problem in
§ 2, namely the closure relation for p∗ and the possible inclusion of the single-phase
Reynolds stress. Another important point is that although the drag/buoyancy bound-
ary conditions that are proposed in § 5 are sufficient to close the two-phase equations
for compressible mixing, there is still incomplete information in the incompressible
limit even when the mixing zone edge trajectories are known. In this subsection, we
determine boundary conditions for the pressures p1 and p2.

Considering the RT mixing layer as a moving entity, we write Newton’s Law as

dP

dt
= Mg − ∆p, (4.1)

where the notation for the centre-of-mass variables and their scaled versions was
introduced in the previous section and ∆p is the net downward pressure force on the
mixing zone boundaries,

∆p(t) = p1 (Z2(t), t)− p2 (Z1(t), t) . (4.2)

Of course, (4.1) also follows directly from integrating the momentum equations (2.3).
It is advantageous to write Newton’s Law in terms of scaled variables, which are time
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independent. Since P = (ρ2 + ρ1)ZVP̂ and Z(t) = Agt2,

dP

dt
= 6(ρ2 − ρ1)A(gt)2P̂ ,

with P̂ = P/2(ρ2 − ρ1)Ag
2t3. Newton’s Law then takes the time-independent form

6AP̂ = M̂ − ∆p̂, (4.3)

where ∆p̂ = ∆p/(ρ2 − ρ1)(gt)
2.

At t = 0, the fluids are at rest and the mixing zone is a point at the origin of
the (z, t)-plane, as described in § 3. The pressure fields are hydrostatically distributed
relative to the pressure pi at the position of the undisturbed interface,

p1(z, 0) = pi + ρ1gz for z > 0,
p2(z, 0) = pi + ρ2gz for z < 0.

Because there is no fluid motion in the pure-phase regions as the incompressible
two-phase flow evolves, one might expect that the pressures outside the mixing zone
remain unchanged. We label this situation with a superscript h, i.e.

p1(z, t) = ph1(z, t) = pi + ρ1gz for z > Z2(t),
p2(z, t) = ph2(z, t) = pi + ρ2gz for z < Z1(t).

Enforcing continuity of pressure across a mixing zone boundary, it follows that
∆ph(t) = ρ1gZ2(t)− ρ2gZ1(t); equivalently,

∆p̂h = 1
2
(1 + A)α1 + 1

2
(1− A)α2.

Comparing to (3.16), we see that ∆p̂h = M̂. Thus, if ∆p̂ = ∆p̂h, then Newton’s

Law (4.3) implies that there is no net force on the mixing layer, so that P̂ = 0 for

A 6= 0. Such a conclusion contradicts the observation made in § 3.2 that P̂ is positive
definite for A 6= 0. It follows that the pressure in at least one of the pure-phase regions
must vary over time, in spite of the fact that there is no fluid motion in this region.

Newton’s Law actually gives ∆p̂ as a function of α1 and α2, since the other
quantities appearing in (4.3) are determined from (3.16) and (3.17). Since our model
has two distinct pressures, there remains a missing pressure boundary condition for
the incompressible case, which we now specify in a simple example. Consider a RT
instability occurring in a rectangular tank at rest on a floor, and suppose that the
tank is open to the atmosphere, the open end being adjacent to the heavy fluid. As the
mixing evolves, the height of the termination of the heavy fluid region must remain
stationary (because both fluids are incompressible) and at atmospheric pressure. Since
∂p2/∂z = ρ2g in the heavy fluid region at all times and p2 is fixed at a certain height
at all times, it follows that p2 outside the mixing zone is hydrostatic and constant
with respect to time; i.e. p2 = ph2 in the heavy fluid region, and hence p1 6= ph1 in the
light fluid region. We therefore know the value of p2 at the bubble edge, and p1 at
the spike edge is subsequently determined from Newton’s Law, as explained above.

Because the momentum equations are a pair of first-order ODEs, one might expect
that their unique solution requires two independent boundary conditions. However,
the two boundary conditions specified above are not independent – one of the
boundary pressures is derived from the other in conjunction with an integral of the
momentum equations, i.e. (4.3). Are the pressure distributions along the mixing zone
therefore underspecified? At the limit A → 0, any non-uniqueness is resolved by the
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symmetry of the mixing with respect to interchange of the fluids. As A → 1, any
non-uniqueness is resolved by the vanishing of fluid 1. At intermediate A, the answer
depends on the form of closure used for p∗. This issue is explored in Glimm et al.
(1998b).

4.3. The centre-of-mass motion of the RT mixing layer

In § 3.2, we observed that while the net momentum P of the mixing layer increases

over time, there is no such restriction on the scaled centre-of-mass position Ẑ , and in

fact it is possible for Ẑ to be stationary during the entire period of unstable mixing.

In this subsection, we discuss the approximate validity of the relation Ẑ = 0 for RT
mixing.

It is clear that Ẑ should vanish in the symmetric limit (A → 0). For Ẑ to remain
zero as A increases, the spikes must become increasingly thin to cancel their favoured
mass, but they need not become infinitesimally thin as A → 1, as there is always
heavy fluid between the bubbles. This qualitative behaviour has been confirmed in

numerical simulations (see, e.g. Gardner et al. 1988). Thus Ẑ = 0 has a clear physical
interpretation and appears to be plausible in an approximate sense.

To compute Ẑ for non-zero A, we require a volume fraction profile (which is implied
by a constitutive law for v∗) in addition to values for α1 and α2. Equation (3.19) gives

Ẑ = 0 at A = 0 if and only if α2 = α1, which we know to be true. Evaluating (3.19)
at A = 1, we have

Ẑ =
α1

2

∫ 1

0

[(
ẑ

α1

)2

− 1

]
dβ1.

The integrand has a single root in the interior of the mixing region, so it is quite

possible for Ẑ to be small (relative to α1), depending on the shape of the volume
fraction profile.

Using Youngs’ (1989) measurements of α1 and α2 and the volume fraction pro-
files (3.25) implied by the fractional linear model (3.26), we find that (3.19) gives a

Ẑ that varies between −0.002 and −0.009 for values of A ranging from 0.79 to 0.93.

In other words, Ẑ appears to be solidly an order of magnitude smaller than α1 at

large A. While the precise value of Ẑ is sensitive to the shape of the volume fraction

profile, the fact that Ẑ is small is not; any reasonable volume fraction profile gives a
similar result.

Conversely, setting Ẑ = 0 in the fractional linear model implies a relation between
α2/α1 and A which correlates well with experimental data. This relation is displayed as
the solid curve in figure 4. For comparison, the figure includes the 1989 measurements
of Youngs and theoretical predictions based on the two-phase model of Freed et al.
(1991) and the statistical merger model of Alon et al. (1995). Freed et al. actually
provide two different analytical approximations for α2/α1, one for small A and one for
large A. Because these approximations do not match at any A, we avoid the problem
of how to blend them by showing only the large-A approximation, which pertains to
the more interesting region of figure 4 while still being reasonably accurate at small A.

The expansion ratio α2/α1 is sensitive to where one terminates the mixing zone.
All of the curves shown in figure 4 are for a 0% cutoff, consistent with the method
used by Read and Youngs. Freed et al. assumed a 5% cutoff when comparing their
theoretical expansion ratios to the same experimental data. Increasing the cutoff
criterion reduces the expansion ratio; a 5% cutoff would lower the solid curve in
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Figure 4. The expansion ratio α2/α1 of the mixing zone as a function of the Atwood ratio
A = (ρ2 − ρ1)/(ρ2 + ρ1). All of the curves and the experimental data plotted here were obtained
assuming sharply-defined mixing zone edges (i.e. no cutoff criterion was applied).

figure 4 enough to make it agree with the experimental data to within the probable
uncertainty in the measurements.

We emphasize that the prediction of the expansion ratio implied by setting Ẑ = 0
is sensitive to the shape of the volume fraction profile. The correctness of the profiles
displayed in figure 3(a) has been established only for A . 1/3. Predicting the expansion
ratio α2/α1 as a function of A amounts to identifying a universal dynamical property
of a RT mixing layer, and there are of course numerous ways to search for one. The

Ẑ = 0 criterion has the advantages that (a) it has a clear physical interpretation; (b)
it is measurable; and (c) it is reasonably consistent with the experimental data, based
on the comparisons reported above.

4.4. Comments on new vs. old models for v∗

The model for v∗ that was proposed by Chen et al. had µk = βk for k = 1, 2, which
is the limit of (3.23) as α2 → α1. This approximation was validated by comparing the
exact and modelled values of v∗∂βk/∂z using data from two-dimensional numerical
simulations of compressible RT instability. Agreement was good over a fairly wide
range of density ratio and compressibility. Since α2 never greatly exceeds α1 over the
range of A considered by Chen et al., it is not contradictory that this simple model
gives good agreement with simulation data in certain contexts, but it should now be
considered as a special case of the fractional linear model (3.26).

In Glimm et al. (1996), a scale-invariant solution for incompressible RT mixing was
presented as a renormalization group fixed point using the original model for v∗. A
relation between α1, α2, and A was obtained from the two-phase momentum equations
with the closure assumptions proposed in Chen et al. The expansion ratio α2/α1,
computed for α1 = 0.06 and variable A, gave reasonable agreement with experiment
but tended to underestimate the data. Since this prediction was, in effect, obtained
in the α2 → α1 limit of (3.23), and it used a hydrostatic approximation for the net
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pressure force ∆p (valid only at A = 0; see § 4.2), it should now be interpreted as a
low-A approximation of the solid curve in figure 4.

5. Boundary conditions for Rayleigh–Taylor mixing
Boundary conditions in the form of dynamical equations for the trajectories of the

mixing zone edges replace physical and geometrical information that is lost in the
averaging process. In RT instability, the furthest penetrating portion of light (heavy)
fluid has the shape of a bubble (spike) and it defines the lower (upper) edge of
the mixing zone. The geometry of the outer portions of the mixing layer therefore
suggests that boundary conditions can be formulated as phenomenological force laws
expressing the balance of buoyant, drag, and inertial (added mass) forces on bubbles
and spikes, a problem which we discuss in § 5.1. At the same time, force laws can be
derived rigorously by combining the two-phase momentum conservation equations
and taking one-sided limits. Such laws are identities, permitting arbitrary edge motion,
and thus they do not close the system. However, as we will show in § 5.2, they illustrate
the important differences between competing two-phase flow models, including their
compatibility with phenomenological force laws for bubbles and spikes.

5.1. Bubble/spike fronts

Considering a mixing zone edge as a single coherent structure (a leading bubble or
spike), we formulate boundary conditions as described above,

(ρk + κkρk′)V k

dVk
dt

= (ρk − ρk′)V kg − (−1)kCD
k ρk′SkV

2
k . (5.1)

Here, V k and Sk are, respectively, the total volume and frontal area of the leading
bubble (k = 1) or spike (k = 2); κk is an added mass coefficient (which accounts for
the increased inertia of the bubble or spike due to its motion through the surrounding
fluid) and CD

k is an adjustable drag coefficient. The form of the drag force in this
equation reflects the choice of inertial reference frame in which the fluid infinitely far
upstream of the leading bubble or spike is stagnant (see the explanation leading to
(3.4) in § 3).

The ratios V k/Sk ≡ Lk for k = 1, 2 introduce phenomenological length scales into
the problem. Dividing (5.1) by V k , we get

(ρk + κkρk′)
dVk
dt

= (ρk − ρk′)g − (−1)k
CD
k ρk′V

2
k

Lk
, (5.2)

The volume-to-surface ratios Lk represent longitudinal length scales, since the relevant
surface is the frontal portion of the leading coherent structure. Otherwise, the precise
definition of Lk is problem dependent and somewhat arbitrary.

Dynamical laws similar in form to (5.2) have been used by other authors to study
the asymptotic trajectories of bubble and spike fronts in RT instability. This idea
was first proposed by Hansom et al. in 1990 (also see Youngs 1991). In fact, (5.2) is
identical to the model of Hansom et al., up to minor differences in the settings of κk
and Lk , as explained below. The bubble/spike model of Alon et al. (1995) and Alon
& Shvarts (1996) contains an adjustable coefficient in the buoyancy term, which is
used to obtain consistency with the potential flow model of Layzer (1955). Alon et al.
have also used their model to analyse the evolution of bubble and spike fronts in the
related Richtmyer–Meshkov (RM) instability (shock-wave-induced mixing).

The three bubble/spike models – Hansom et al., Alon et al., and the present one
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(ρk + κkρk′ )
dVk
dt

= CB
k (ρk − ρk′ )g − (−1)k

CD
k ρk′V

2
k

Lk

Model Lk κk CB
k CD

k

Hansom et al. (1990) |Zk| 1 1 1
2
− αk

[1− (−1)kA]αk

Alon et al. (1995; 1996) |Zk| 1 1
2

6π

1 + A
(k = 1)

2π

1− A
(

4α1

α2

− 1

)
(k = 2)

Present work

∣∣∣∣∂βk∂z
∣∣∣∣−1

z=Zk

1 (2D)

1
2

(3D)
1

1− 2αk
[1− (−1)kA]αk′

(2D)

1− 2αk
[1− (−1)kA]αk′

+
αk

2αk′
(3D)

Table 1. A comparison between three different phenomenological models for the balance of forces
on bubble (k = 1) and spike (k = 2) fronts in RT mixing layers. These models have the common form
given above, where κk , C

B
k and CD

k are, respectively, added mass, buoyancy, and drag coefficients. The
value of the drag coefficient depends on the convention chosen for the longitudinal length scale Lk ,
which is indicated in the second column. The settings of κk , C

B
k and CD

k indicated above are relevant
to planar incompressible RT mixing, for which the edge trajectories are Zk(t) = (−1)kαkAgt

2.

– are compared in table 1. This comparison assumes the asymptotic trajectories (2.9)
relevant to incompressible RT instability. The length scale used in the present model
is Lk = |∂βk/∂z|−1, evaluated in the limit of vanishing βk . Thus Lk depends on the
solution for the mixing zone interior. For the incompressible RT mixing layer, Lk is
directly obtained from the self-similar solution derived in § 3.2. Differentiating (3.25)
we get

dẑ

dβ1

=
2

α
[α1α2 − ẑ(α1 − α2)] .

Evaluating this expression at the upper and lower edges of the mixing zone gives

Lk(t) =

∣∣∣∣∂βk∂z
∣∣∣∣−1

βk=0

=
dẑ

dβ1

∣∣∣
βk=0
Z(t) =

2α2
k

αk′
Agt2. (5.3)

The reason for this somewhat complicated choice of Lk will be made clear below. The
setting of the added mass coefficient κk depends on the front geometry. In two (three)
dimensions, we approximate the bubble/spike front as having a circular (spherical)
profile, so that κk = 1 (κk = 1/2) (Lamb 1932). Hansom et al. and Alon et al. both
use Lk = |Zk| and κk = 1. In the large-time limit of the expanding RT mixing layer,
the buoyancy coefficient CB

k in the Alon et al. model approaches 1/2.
Inserting the trajectories (2.9) into the bubble/spike evolution equations (5.2) for

k = 1, 2 determines a map between the mixing coefficients (α1, α2) and the drag
coefficients (CD

1 , C
D
2 ). These relations are given for the three models in table 1. Since

the boundary conditions for incompressible RT instability are already known up to
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determination of the mixing coefficients α1 and α2, the phenomenological boundary
conditions (5.2) are useful only to the extent that they are valid outside of this flow
regime, e.g. to compressible fluids or to RM mixing. For example, Alon et al. (1995)
and Alon & Shvarts (1996) used known results for incompressible RT mixing to set
the coefficients in their bubble/spike model, and then found that it gave an accurate
prediction of the mixing layer growth rates in RM mixing.

In our judgment, the similarities between these models are more important than
the differences. Further work should address the validation and calibration of these
models for other flow regimes, including the problem of setting the phenomenological
coefficients.

5.2. Two-phase limits

Force balances for the mixing zone edges can be derived rigorously from a two-phase
flow model by combining the momentum equations and taking one-sided limits. We
now demonstrate this procedure using the momentum equations written in the general
form

ρk
Dkvk

Dt
= −∂pk

∂z
+ ρkg +

fkk′

βk
, (5.4)

where Dk/Dt ≡ ∂/∂t+vk∂/∂z is the phase-k convective derivative and fkk′ is a general
interfacial source term, which in the absence of single-phase turbulence is given by

fkk′ = (p∗ − pk)∂βk
∂z

.

We now consider incompressible flow and compare the present model to the single-
pressure model of Freed et al. (1991), which is based on earlier single-pressure two-
phase flow models (Harlow & Amsden 1975; Youngs 1984). Assuming the model (2.6)
for p∗ introduced in § 1,

fkk′ = µ
p
k(t, βk)(pk′ − pk)∂βk∂z . (5.5)

Denoting quantities specific to the Freed model with a superscript F , we have

fFkk′ = −(−1)k
CFβ1β2ρ

LF
(v2 − v1)

2, (5.5F)

where CF and LF are, respectively, a phenomenological drag coefficient and mixing
length for the interior of the mixing zone, and ρ = β1ρ1 +β2ρ2. The mixing length LF

satisfies its own evolution equation, given in Freed et al. (1991).
At edge k, which follows the trajectory z = Zk(t), we have βk = 0, βk′ = 1, vk′ = 0,

and vk = Vk . Consider the acceleration Dk′vk′/Dt of the ambient phase at this edge,
which in view of these boundary conditions is equal to ∂vk′/∂t. However, because
edge k is a phase-k particle characteristic,

0 =
Dkvk′

Dt
=
∂vk′

∂t
+ Vk

∂vk′

∂z
,

so that

Dk′vk′

Dt
= −Vk ∂vk′

∂z

along z = Zk(t). Expanding the derivative in the incompressiblity condition (3.3),

βk
∂vk

∂z
+ vk

∂βk

∂z
+ βk′

∂vk′

∂z
+ vk′

∂βk′

∂z
= 0.
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Evaluation of this expression at edge k yields ∂vk′/∂z = −Vk∂βk/∂z; thus

Dk′vk′

Dt
= V 2

k

∂βk

∂z
. (5.6)

By subtracting the k′ from the k momentum equation (5.4), evaluating along
z = Zk(t), and using (5.6), we derive dynamical equations for the mixing zone edges,

ρk
dVk
dt

= (ρk − ρk′)g +
∂

∂z
(pk′ − pk)− (−1)k

ρk′V
2
k

Lk
− fk′k + lim

βk→0

fkk′

βk
. (5.7)

The length scales Lk given by (5.3) appear naturally in these equations, due to the
inertia of the ambient phase at a mixing zone edge. This fact has nothing to do with
the modelling of the interfacial force fkk′ . Substitution of both models for fkk′ , (5.5)
and (5.5F), into (5.7) gives

ρk
dVk
dt

= (ρk − ρk′)g +
∂

∂z
(pk′ − pk)− (−1)k

Lk

[
ρk′V

2
k + (νk − 1)(pk′ − pk)] (5.8)

and

ρk
dVk
dt

= (ρk − ρk′)g − (−1)k
(

1

Lk
+
CF

LF

)
ρk′V

2
k , (5.8F)

respectively, where νk(t) = limβk→0 µ
p
k(t, βk)/βk and in (5.8F) we have set p2 = p1.

It is important to understand that equations (5.7) for k = 1, 2 do not replace the
boundary conditions for the mixing zone edges, e.g. (5.2). Because (5.7) is derived from
the momentum equations, which are first-order ODEs, it certainly cannot supply the
independent boundary data required to uniquely specify the two-phase flow. However,
(5.7) helps to separate out the forces that act on the bubble/spike fronts, so that it is
worthwhile to compare (5.8) and (5.8F) to the ‘general’ phenomenological equation
displayed at the top of table 1. In view of the step leading from (5.1) to (5.2),
we identify the terms in (5.8) and (5.8F) as volume or surface forces, the latter
being proportional to an inverse length scale. This partitioning of the forces leads to
some interesting observations and raises new questions about the phenomenological
modelling of the bubble/spike fronts.

Note that the buoyant force density (ρk − ρk′)g appears in (5.8) and (5.8F) with
a coefficient of unity (CB

k = 1). This does not mean that it is incorrect to readjust
buoyancy, but the source of the readjustment should be another volume force, for
example the pressure difference gradient in (5.8). The Freed model lacks the degrees
of freedom to describe a readjusted buoyant force, and is thus incompatible with
any front equations having CB

k 6= 1. A similar remark applies to the added mass
κkρk′dVk/dt. Equation (5.8F) lacks a term to account for this volume force, while
again the pressure difference gradient in (5.8) is a possible source of added mass.

Despite its definition and appearance as such, fkk′ is not strictly a surface force. An
alternative model for p∗ could have a term proportional to a length; its contribution
to fkk′ through p∗dβk/dz would therefore be a volume force. In a dispersed two-phase
flow, p∗dβk/dz does in fact contribute a volume force, in the form of added mass
(Stuhmiller 1977). Addition of such a term to a model for fkk′ would add a term to
the right-hand side of (5.8) similar to the added mass term in the phenomenological
law (5.2). The issue of whether p∗ should be modified to include added mass leads to
a larger question of whether the regions near the edges of the mixing layer (where one
of the volume fractions is small) can be correctly described by conventional dispersed
two-phase flow models. These issues deserve further study.
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x

z

Figure 5. Horizontal averaging at a height near the tips of the leading bubbles, where β1 ≈ 0.
Contributions to phase 1 quantities come from the solid segments, all of which lie near bubble tips.
Contributions to phase 2 quantities come from the dotted segments, which occur in a variety of
flow regimes.

6. Two-pressure vs. single-pressure two-phase flow models
The results of the previous sections indicate that several important properties of the

evolution of an incompressible mixing layer are determined from a single constitutive
law. Depending on the form of boundary closure assumed (i.e. whether or not it
involves pressure), the coupling of the momentum equations to the interface and
continuity equations can occur only at the edges of the mixing zone. This situation
breaks down in mixing processes where compressibility is important. We therefore
explain the reasons why the two-pressure formulation of two-phase mixing has a
sounder physical and mathematical foundation than one with a single pressure field.

A two-phase flow of immiscible fluids can be interpreted as a statistical average
over an ensemble of microscopic flow realizations. In this picture, two-phase models
that utilize a single pressure field impose a constraint of local pressure equilibration
on the averaged flow, i.e. p1 = p2 everywhere inside the mixing layer. This assumption
is physically implausible, as the following argument shows.

Consider a two-dimensional RT problem with an arbitrarily long array of random
modes arranged along the horizontal (x) direction. In this example, one obtains a
single-phase quantity by horizontally averaging. In particular, p1(z, t) is the average
value of the local pressure p, at fixed z and t, over all x where the light fluid is present.
Suppose that the value of z is close to the displacement of the leading bubble tips, as
illustrated in figure 5. Then the contributions to the sample of light fluid determining
p1 (the solid segments in figure 5) are in general widely spaced and they primarily
belong to a single flow regime, the flow near a bubble tip. On the other hand, to
compute p2 at the same height, one samples the heavy fluid in different flow regimes,
as the regions of heavy fluid across which one is averaging (the dotted segments in
figure 5) are at widely varying distances from bubble tips. While the microscopic
(pre-averaged) fluid pressures are roughly equal near the bubble tips, the regions near
the leading bubble tips make the dominant contribution to p1 but not to p2. Thus
it is not physically reasonable to impose the constraint p1 = p2. The same argument
applied to the other side of the mixing zone explains why equilibration of the average
pressures does not occur near the tips of the leading spikes.

The pressures p1 and p2 do not equilibrate in the interior of the mixing zone, for
reasons that are fundamentally the same but have a different explanation. The heavy
(light) fluid in the microscopic flow is primarily contained within spikes (bubbles),
a fact which biases the averaging process to determine the single-phase pressure. At
any height within the mixing layer, there are significant pressure differences between
spikes and bubbles on the basis of hydrostatics and inertial forces, so that p1 6= p2 in
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general. Non-equilibration of pressure in RT instability is easy to understand in the
case A = 1, for then p1 is identically zero everywhere while p2 cannot possibly satisfy
this constraint throughout the mixing zone.

Imposing pressure equilibration rules out a possibly important mode of interphase
momentum transfer. The form of fkk′ given by (5.5) indicates that the drag force in
the interior of the mixing layer is purely a pressure drag, but our model is compatible
with other forms of drag. Two-phase flow models with equal fluid pressures cannot
describe a drag force based on pressure differences. A viscous drag law such as (5.5F)
is often used to model the momentum exchange in single-pressure two-phase models
(see, e.g. Drew 1983; Harlow & Amsden 1975; Youngs 1984).

There are several more reasons not to set p2 = p1. On a mathematical basis, two-
pressure models have real characteristic values (Stewart & Wendroff 1984; Holm &
Kupershmidt 1984; Ransom & Hicks 1984), and thus can be solved using standard
numerical techniques for hyperbolic partial differential equations. Ransom & Hicks
(1984) have studied this issue in detail and concluded that imposing pressure equili-
bration in a two-phase separated flow introduces instabilities which lack a physical
basis and, even worse, may obscure the actual (physical) instabilities. It is also dif-
ficult to formulate an equation of state for a two-phase compressible flow with a
single pressure field unless one assumes that the fluids mix at the molecular level.
Fundamentally, p2 = p1 is a modelling approximation, used to close the equations
of motion, and its validity or lack of validity must be determined by reference to
the physics of the specific problem. In contrast, distinct pressures appear naturally in
the ensemble-averaged equations of motion, which are formally exact. Thus the two-
pressure formulation offers compelling improvements in the modelling of two-phase
immiscible fluid mixing.

7. Conclusion
In this study, we have improved and extended a two-phase flow model for the

macroscopic evolution of chaotic fluid mixing, with an emphasis on its application
to Rayleigh–Taylor instability. The principal features that distinguish the two-phase
flow model proposed here from other models (Harlow & Amsden 1975; Youngs 1984;
Freed et al. 1991) are the following: The present model

(a) describes compressible fluids, and thus requires boundary conditions for the
edges of the mixing zone (the equivalent boundary conditions in the incompressible
limit are the trajectories Zk(t) = (−1)kαkAgt

2);
(b) is compatible with all known models for the forces on the leading bubbles and

spikes in Rayleigh–Taylor instability;
(c) contains distinct pressure fields, one for each phase, and thus allows for inter-

phase momentum transfer via pressure forces;
(d) utilizes an ensemble-averaged kinematic equation for the material interface,

which is a hyperbolic equation for the volume fraction. The modelling of the propa-
gation speed v∗ replaces the more common closure approximation p2 = p1.

Other potentially important processes, such as viscous drag, mass diffusion, tur-
bulent diffusion, and heat conduction, can be incorporated into the model in a
straightforward manner.
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